Solving Sine－Law Problems

なりおおごき

Label the sides of the triangle．Complete the sine law for $\triangle D E F$ ．

$$
\begin{aligned}
& \text { i) } \frac{d}{\sin \sqrt{D}}=\frac{e}{\sin E}=\frac{\boxed{f}}{\sin \sqrt{F}} \\
& \text { ii) } \frac{\sin D}{\sqrt{d}}=\frac{\sin \sqrt{E}}{\sqrt{e}}=\frac{\sin \sqrt{F}}{f}
\end{aligned}
$$

REFLECTING

Why was it necessary to determine the measure of $\angle B$ ？
Could you have used the measure of $\angle C$ instead？

golden rectangle

a rectangle with a length that is about 1.618 times its width； the golden rectangle is often used in art and in architecture

The eight－pointed morning－star quilt is a traditional gift in Sioux culture．The points of the star are congruent isosceles triangles． For $\triangle A B C$ ，base $B C$ is 21.5 in ．and $\angle A$ is 46° ．What is the length of sides $A B$ and $C A$ ？
（1）What is the measure of $\angle B$ ？

$$
\begin{aligned}
2(\angle B) & =180^{\circ}-46^{\circ} \\
2(\angle B) & =134^{\circ} \\
\angle B & =67^{\circ}
\end{aligned}
$$

（2）What is the length of sides $A B$ and $C A$ ？

$$
\begin{aligned}
\frac{b}{\sin 67^{\circ}} & =\frac{21.5}{\sin 46} \\
b & =\sin 67^{\circ}\left(\frac{21.5}{\sin 466^{\circ}}\right) \\
b & =27.512 \ldots
\end{aligned}
$$

The length of sides $A B$ and $C A$ is 27.5 in．

Example

Grant is making a stained－glass window． He wants to use the triangle in the diagram at the right．Each side of the triangle will be the base of a golden rectangle．
What will be the dimensions of each golden rectangle？

Hint
Keep all decimal digits in Parts A and B for later calculations.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} \\
\frac{\sin A}{21.2} & =\frac{\sin \sqrt{37}^{\circ}}{13.1} \\
\sin A & \left.=\frac{21.2\left(\frac{\sin 37^{\circ}}{13.1}\right.}{}\right) \\
\sin A & =\underline{0.9739 \ldots}
\end{aligned}
$$

Determine $\angle A$.

$$
\begin{aligned}
& \angle A=\sin ^{-1}(0.9739 \ldots) \\
& \angle A=76.888 \ldots)^{\circ}
\end{aligned}
$$

B. What is the measure of $\angle C$? What is the length of side c ?

$$
\begin{aligned}
& \angle C=\underline{180^{\circ}}-\angle A-\angle B \\
& \angle C={\underline{180^{\circ}}}^{\circ}-\underbrace{76.888 \ldots .^{\circ}} \text {. }{ }^{\circ} \text {, or } 66.111 \ldots{ }^{\circ} \\
& \frac{C}{\sin 66.111 \ldots}{ }^{\circ} \\
& \frac{13.1}{\sin 37}
\end{aligned}
$$

$$
c=\sin 66.111 \ldots{ }^{\circ}\left(\frac{13.1}{\sin 37^{\circ}}\right) \text {, or } 19.902 \ldots
$$

REFLECTING

 Why do you think two versions of the sine law are used for Parts A and B ?C. What will be the dimensions of each golden rectangle?

Golden rectangle on $A C$:
Length: 13.1 cm
Width: $13.1 \mathrm{~cm} \div 1.618=8.096 \ldots \mathrm{~cm}$
Golden rectangle on $B C$:
Length: 21.2 cm
Width: $21.2 \mathrm{~cm} \div 1.618=13.102 . . . \mathrm{cm}$
Golden rectangle on $A B$:

The construction of the Acropolis in Greece uses the golden rectangle.

Length: 19.902... cm
Width: $19.902 \ldots \mathrm{~cm} \div 1.618=12.300 \ldots \mathrm{~cm}$
The rectangle on $A C$ is 13.1 cm by $\quad 8.1 \mathrm{~cm}$.
The rectangle on $B C$ is 21.2 cm by 13.1 cm .
The rectangle on $A B$ is 19.9 cm by $\quad 12.3 \mathrm{~cm}$.

Hint
Record calculated answer measurements on the diagrams.

Practice

1. Lucien is building a bridge across a creek in British Columbia. He took measurements along shoreline $A B$, as shown. What is the length of the bridge?
e.g., $\begin{array}{rlrl}\angle C & =180^{\circ}-\angle A-\angle B & \text { e.g., } \frac{b}{\sin B} & =\frac{c}{\sin C} \\ \angle C=180^{\circ}-37^{\circ}-78^{\circ} & \frac{b}{\sin 37^{\circ}} & =\frac{100}{\sin 65^{\circ}} \\ \angle C=65^{\circ} & b & =\sin 37^{\circ}\left(\frac{100}{\sin 65^{\circ}}\right) \\ b & =66.402 \ldots\end{array}$

The bridge is 66 yd long.

2. Anya used cables to anchor an advertising balloon above a building. The cables are attached to the ground, 36.00 m apart, at X and Y. The angles of elevation to the bottom of the balloon are 34° and 62°.
How long are the cables? Do not include the length needed to secure them to the ground.

$$
\begin{aligned}
& \angle H=180^{\circ}-34^{\circ}-62^{\circ} \\
& \angle H=84^{\circ}
\end{aligned}
$$

Cable XH:
$\frac{y}{\sin 62^{\circ}}=\frac{36}{\sin 84^{\circ}}$

$$
\begin{aligned}
& y=\sin 62^{\circ}\left(\frac{36}{\sin 84^{\circ}}\right) \\
& y=31.961 \ldots, \text { or } 31.96 \mathrm{~m}
\end{aligned}
$$

Cable YH:
$\frac{x}{\sin 34^{\circ}}=\frac{36}{\sin 84^{\circ}}$
$x=\sin 34^{\circ}\left(\frac{36}{\sin 84^{\circ}}\right)$
$x=20.241 \ldots$, or 20.24 m

3. Madison is a roofer in Manitoba. She is shingling dormers on a roof, as shown at the right. $\angle Y Z X$ is 90°. At what angles along $Y X$ must Madison cut the shingles on the dormer?

$$
\text { e.g., } \begin{aligned}
\frac{\sin Y}{40} & =\frac{\sin 90^{\circ}}{60.2} \\
\sin Y & =40\left(\frac{\sin 90^{\circ}}{60.2}\right) \\
\sin Y & =0.6644 \ldots \\
\angle Y & =\sin ^{-1}(0.6644 \ldots) \\
\angle Y & =41.640 \ldots
\end{aligned}
$$

4. The Saamis Teepee was built for the 1988 Calgary Olympics as a symbol of Canada's Aboriginal heritage. It was moved to Medicine Hat in 1991. How long is each pole?

- The diameter of the base is 160 ft .
- The poles that form the teepee are at an angle of 68° with the ground.
e.g. $\begin{aligned} \angle C & =180^{\circ}-\angle A-\angle B \\ \angle C & =180^{\circ}-68^{\circ}-68^{\circ}\end{aligned} \quad \frac{a}{\sin A}=\frac{c}{\sin C}$
$\frac{a}{\sin 68^{\circ}}=\frac{160}{\sin 44^{\circ}}$
$a=\sin 68^{\circ}\left(\frac{160}{\sin 44^{\circ}}\right)$
$a=213.557 \ldots$ Each pole is 214 ft long.

5. A triangle is solved when all three side lengths and all three angle measures are known. Follow these steps to solve $\triangle B K Y$.
a) Determine $\angle K$.

$$
\text { e.g., } \begin{aligned}
\frac{\sin K}{k} & =\frac{\sin Y}{y} \\
\frac{\sin K}{7.0} & =\frac{\sin 58^{\circ}}{7.9} \\
\sin K & =7.0\left(\frac{\sin 58^{\circ}}{7.9}\right) \\
\sin K & =0.7514 \ldots \\
\angle K & =\sin ^{-1}(0.7514 \ldots) \\
\angle K & =48.714 \ldots{ }^{\circ}, \text { or } 49^{\circ}
\end{aligned}
$$

b) Determine $\angle B$.

$$
\text { e.g., } \begin{aligned}
\angle B & =180^{\circ}-48.714 \ldots .^{\circ}-58^{\circ} \\
\angle B & =73.285 \ldots{ }^{\circ} \text {, or } 73^{\circ}
\end{aligned}
$$

c) Determine side b.

$$
\begin{aligned}
\text { e.9., } \frac{b}{\sin B} & =\frac{Y}{\sin Y} \\
\frac{b}{\sin 73.285 \ldots{ }^{\circ}} & =\frac{7.9}{\sin 58^{\circ}} \\
b & =\sin 73.285 \ldots \circ\left(\frac{7.9}{\sin 58^{\circ}}\right) \\
b & =8.921 \ldots, \text { or } 8.9 \mathrm{~cm}
\end{aligned}
$$

